首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115756篇
  免费   2232篇
  国内免费   2593篇
  2023年   257篇
  2022年   377篇
  2021年   1251篇
  2020年   897篇
  2019年   1045篇
  2018年   12617篇
  2017年   11184篇
  2016年   8357篇
  2015年   2047篇
  2014年   2013篇
  2013年   2187篇
  2012年   6393篇
  2011年   14557篇
  2010年   13009篇
  2009年   9144篇
  2008年   10879篇
  2007年   12324篇
  2006年   1175篇
  2005年   1317篇
  2004年   1650篇
  2003年   1639篇
  2002年   1320篇
  2001年   735篇
  2000年   578篇
  1999年   429篇
  1998年   267篇
  1997年   291篇
  1996年   266篇
  1995年   244篇
  1994年   229篇
  1993年   165篇
  1992年   227篇
  1991年   182篇
  1990年   138篇
  1989年   116篇
  1988年   90篇
  1987年   107篇
  1986年   56篇
  1985年   56篇
  1984年   50篇
  1983年   47篇
  1982年   32篇
  1981年   19篇
  1980年   9篇
  1972年   246篇
  1971年   274篇
  1965年   13篇
  1962年   24篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Pain affects the quality of life for millions of individuals and is a major reason for healthcare utilization. As populations age, medical personnel will need to manage more and more patients suffering from pain associated with degenerative and inflammatory musculoskeletal disorders. Nonsteroidal anti-inflammatory drugs (NSAIDs) are an effective treatment for both acute and chronic musculoskeletal pain; however, their use is associated with potentially significant gastrointestinal (GI) toxicity. Guidelines suggest various strategies to prevent problems in those at risk for NSAID-associated GI complications. In this article, we review the data supporting one such strategy - the use of histamine type-2 receptor antagonists (H2RAs) - for the prevention of GI adverse events in NSAID users. Older studies suggest that high-dose H2RAs are effective in preventing upper GI ulcers and dyspepsia. This suggestion was recently confirmed during clinical trials with a new ibuprofen/famotidine combination that reduced the risk of ulcers by 50% compared with ibuprofen alone.  相似文献   
992.

Introduction

It is well known that neutrophils play very important roles in the development of rheumatoid arthritis (RA) and interleukin (IL)-8 is a critical chemokine in promoting neutrophil migration. We previously showed that increased production of Cyr61 by fibroblast-like synoviocytes (FLS) in RA promotes FLS proliferation and Th17 cell differentiation, thus Cyr61 is a pro-inflammatory factor in RA pathogenesis. In this study, we explored the role of Cyr61 in neutrophil migration to the joints of RA patients.

Methods

RA FLS were treated with Cyr61 and IL-8 expression was analyzed by real-time PCR and ELISA. The migration of neutrophils recruited by the culture supernatants was determined by the use of a chemotaxis assay. Mice with collagen-induced arthritis (CIA) were treated with anti-Cyr61 monoclonal antibodies (mAb), or IgG1 as a control. Arthritis severity was determined by visual examination of the paws and joint destruction was determined by hematoxylin-eosin (H&E) staining. Signal transduction pathways in Cyr61-induced IL-8 production were investigated by real-time PCR, western blotting, confocal microscopy, luciferase reporter assay or chromatin immunoprecipitation (ChIP) assay.

Results

We found that Cyr61 induced IL-8 production by RA FLS in an IL-1β and TNF-α independent pathway. Moreover, we identified that Cyr61-induced IL-8-mediated neutrophil migration in vitro. Using a CIA animal model, we found that treatment with anti-Cyr61 mAb led to a reduction in MIP-2 (a counterpart of human IL-8) expression and decrease in neutrophil infiltration, which is consistent with an attenuation of inflammation in vivo. Mechanistically, we showed that Cyr61 induced IL-8 production in FLS via AKT, JNK and ERK1/2-dependent AP-1, C/EBPβ and NF-κB signaling pathways.

Conclusions

Our results here reveal a novel role of Cyr61 in the pathogenesis of RA. It promotes neutrophil infiltration via up-regulation of IL-8 production in FLS. Taken together with our previous work, this study provides further evidence that Cyr61 plays a key role in the vicious cycle formed by the interaction between infiltrating neutrophils, proliferated FLS and activated Th17 cells in the development of RA.  相似文献   
993.
Experiments were conducted to investigate and control pollutant emission from incineration of Sedum plumbizincicola plants on a laboratory scale using an entrained flow tube furnace. Without control technologies, the flue gas contained 0.101 mg Nm?3 of Cd, 46.4 mg Nm?3 of Zn, 553 mg Nm?3 of NOx, 131 pg Nm?3 of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/Fs) and 35.4 mg Nm?3 of polycyclic aromatic hydrocarbons (PAHs). In pollutants control experiments. Al2O3, CaO, and kaolin were compared as adsorbents and activated carbon was used as an end-of-pipe method for the capture of pollutants. Kaolin, the most effective of the three adsorbents, removed 91.2% of the Cd in flue gas. While 97.6% of the Cd and 99.6% of the PAHs were removed by activated carbon. Incineration may therefore be regarded as a viable option for the safe disposal of the biomass of the zinc and cadmium hyperaccumulator species S. plumbizincicola.  相似文献   
994.
Abstract

The pharmacokinetics and toxicology of 2′,3′-dideoxy-β-L-5-fluorocytidine (β-L-FddC) and 2′,3′-dideoxy-β-L-cytidine (β-L-ddC) in mice was investigated. In addition, 2′,3′-dideoxy-β-L-5-azacytidine (β-L-5-aza-ddC) and its α-L-anomer (α-L-5-aza-ddC) were synthesized by coupling the silylated 5-azacytosine derivative with 1-O-acetyl-5-O-(tert-butyldimethylsilyl)-2,3-dideoxy-L-ribofuranose, followed by separation of the α-and β-anomers and were evaluated in vitro against HBV and HIV. β-L-5-aza-ddC was found to show significant anti-HBV activity at approximately the same level as 2′,3′-dideoxy-β-D-cytidine (ddC), which is a known anti-HBV agent. β-L-5-aza-ddC was not cytotoxic to L1210, P388, S-180, and CCRF-CEM cells up to a concentration of 100 μ. Conversely, the α-L-anomer was not active against HBV at the same concentration.  相似文献   
995.
996.
Solid dispersion systems of telmisartan (a poorly water-soluble antihypertension drug) with biopolymer carrier chitosan have been investigated in this study. The mechanism of solubilization of chitosan for drug has been studied. In addition, the influence of several factors was carefully examined, including the preparation methods, the drug/carrier weight ratios, and the milling time. Drug dissolution and physical characterization of different binary systems were studied by in vitro dissolution test, particle size distribution, Fourier transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffractometry, and scanning electron microscopy. The results presented that the weak basic property of chitosan appeared as the main driving force for the drug dissolution enhancement. Other effects such as decreased drug crystallinity and size played a positive contributory role. Among the preparation methods, cogrinding was the best method showing strong drug amorphization, reduced particle size, and enhanced dissolution. The drug dissolution markedly improved with increasing the amount of chitosan in solid mixtures. As a result, a significant effect of chitosan increasing telmisartan dissolution has been demonstrated, and cogrinding in a roll ball mill was the best way to prepare solid dispersions, which had high degree of uniformity in drug content and had a practical application in manufacturing.  相似文献   
997.
998.
Global phosphorylation changes in plants in response to environmental stress have been relatively poorly characterized to date. Here we introduce a novel mass spectrometry-based label-free quantitation method that facilitates systematic profiling plant phosphoproteome changes with high efficiency and accuracy. This method employs synthetic peptide libraries tailored specifically as internal standards for complex phosphopeptide samples and accordingly, a local normalization algorithm, LAXIC, which calculates phosphopeptide abundance normalized locally with co-eluting library peptides. Normalization was achieved in a small time frame centered to each phosphopeptide to compensate for the diverse ion suppression effect across retention time. The label-free LAXIC method was further treated with a linear regression function to accurately measure phosphoproteome responses to osmotic stress in Arabidopsis. Among 2027 unique phosphopeptides identified and 1850 quantified phosphopeptides in Arabidopsis samples, 468 regulated phosphopeptides representing 497 phosphosites have shown significant changes. Several known and novel components in the abiotic stress pathway were identified, illustrating the capability of this method to identify critical signaling events among dynamic and complex phosphorylation. Further assessment of those regulated proteins may help shed light on phosphorylation response to osmotic stress in plants.Phosphorylation plays a pivotal role in the regulation of a majority of cellular processes via signaling transduction pathways. During the last decade, quantitative phosphoproteomics has become a powerful and versatile platform to profile signaling pathways at a system-wide scale. Multiple signaling networks in different organisms have been characterized through global phosphorylation profiling (13), which has evolved over the years with highly optimized procedures for sample preparation and phosphopeptide enrichment, high resolution mass spectrometry, and data analysis algorithms to identify and quantify thousands of phosphorylation events (48).Quantitative phosphoproteomics can be achieved mainly by two major techniques, stable isotope labeling and label-free quantitation. Isotope labeling prior to liquid chromatography-mass spectrometry (LC-MS)1 has been widely used, including metabolic labeling such as stable isotope labeling by amino acids in cell culture (SILAC), chemical labeling such as multiplexed isobaric tags for relative and absolute quantification (iTRAQ) and isotope-coded affinity tags (ICAT) (912). On the other hand, label-free quantitation has gained momentum in recent years (1315), as no additional chemistry or sample preparation steps are required. Compared with stable isotope labeling, label-free quantitation has higher compatibility with the source of the samples, the number of samples for comparison, and the instrument choice.Many label-free approaches, in particular to phosphoproteomics, are based on ion intensity (16, 17), but they are relatively error-prone because of run-to-run variations in LC/MS performance (18). In theory, such systematic errors can be corrected by spiking an internal standard into every sample to be compared. Several methods based on internal standard spiking have been reported so far. Absolute quantification peptide technology (AQUA) (19), for example, uses synthetic peptides with isotope labeling for absolute quantitation. For a global quantitative proteomics study, it is unrealistic to spike-in all reference peptides. Another labeling reference method, spike-in SILAC appears to be a promising technique to quantify the proteome in vivo with multiplex capability and it can be extended to clinical samples (20). One solution to large-scale quantitation without any isotope labeling is pseudo internal standard approach (21), which selects endogenous house-keeping proteins as the internal standard so that no spike-in reagent is required. However, finding a good pseudo internal standard remains a challenge for phosphoproteome samples. Spike-in experiments are an alternative way to improve normalization profile. Some internal standard peptides such as MassPREPTM (Waters) were already widely used. Other groups spiked an identical amount of standard protein into samples prior to protein digestion (2224). There are two major normalization procedures. In one approach, sample peptides were normalized to the total peak intensity of spike-in peptides (25). Alternatively, the digested peptides were compared at first and the normalization factor was determined in different ways such as the median (26) or average of ratios (27). However, spiking an identical amount of standard proteins into phosphoproteomic samples before protein digestion may not be compatible with phosphoproteomic analyses which typically require a phosphopeptide enrichment step. Spectral counting has been extensively applied in large sets of proteomic samples because of its simplicity but the method is often not reliable for the quantitation of phosphoproteins, which are typically identified by single phosphopeptides with few spectra (2830). Many software packages have been implemented to support the wide variety of those quantitation techniques, including commercial platforms such as Progenesis LC-MSTM, Mascot DistillerTM, PEAKS QTM, etc., as well as open-source software packages including MaxQuant (31), PEPPeR (32), Skyline (33), etc.In this study, we have devised a novel label-free quantitation strategy termed Library Assisted eXtracted Ion Chromatogram (LAXIC) for plant phosphoproteomic analyses with high accuracy and consistency (Fig. 1). The approach employs synthetic peptide libraries as the internal standard. These peptides were prepared to have proper properties for quality control assessments and mass spectrometric measurements. In particular, peptides were designed to elute sequentially over an entire LC gradient and to have suitable ionization efficiency and m/z values within the normally scanned mass range. Local normalization of peak intensity is performed using Loess Procedure, a data treatment adopted from cDNA microarray data analysis (34). To monitor the diverse ion suppression effect across retention time, the local normalization factors (LNFs) are determined by internal standard pairs in individual time windows. Finally, samples will be quantified with LNFs in order to correct variance of LC-MS conditions. This quantification occurs in a small time frame centered to each target peptide.Open in a separate windowFig. 1.Work flow for the LAXIC strategy to quantify the phosphorylation change in response to osmotic stress. A, Schematic representation of the LAXIC algorithm. First, all the chromatographic peaks were aligned and the ratios were calculated. Second, the normalization factors which equal to ratios of library peptide peaks between MS runs were chosen to construct normalization curve. Third, sample peptide peak ratios were normalized against predicted normalization factor corresponding to certain retention time. B, Schematic representation of quantitative phosphoproteomics. Plants either treated with mannitol or PBS were lysed and mixed proportionally at first. Following peptide digestion and enrichment, phosphopeptides were identified and further quantified through LAXIC incorporated with self-validating process using thelinear regression model to analyze the fold change (fold), linearity (R2) and accuracy (%Acc).Water deficit and salinity causes osmotic stress, which is a major environmental factor limiting plant agricultural productivity. Osmotic stress rapidly changes the metabolism, gene expression and development of plant cells by activating several signaling pathways. Several protein kinases have been characterized as key components in osmotic stress signaling. Arabidopsis histidine kinase AHK1 can complement the histidine kinase mutant yeast, which can act as the osmosensor in yeast (35). Overexpression of AHK1 gene increases the drought tolerance of transgenic plants in Arabidopsis (36). Similar to yeast, the MAPK kinase cascade is also involved in osmotic stress response in plants. It is reported that AtMPK3, AtMPK6, and tobacco SIPK can be activated by NaCl or mannitol, and play positive roles in osmotic signaling (37, 38). MKK7 and MKKK20 may act as the up-stream kinase in the kinase cascade (39). Involvement of some calcium-dependent protein kinases, such as AtCPK21, AtCPK6, and OsCPK7 (CDPK) in osmotic stress signaling has also been reported (4042). Another kinase family, SNF1-related protein kinase (SnRK) 2, also participates in osmotic stress response. In Arabidopsis, there are ten members in the SnRK2 family. Five from the ten SnRK2s, SnRK2, 3, 6, 7, and 8, can be activated by abscisic acid (ABA) and play central roles in ABA-receptor coupled signaling (43, 44). Furthermore, all SnRK2s except SnRK2.9 can be activated by NaCl or mannitol treatment (43). The decuple mutant of SnRK2 showed a strong osmotic hypersensitive phenotype (45). It is proposed that protein kinases including MAPK and SnRK2s have a critical function in osmotic stress (46), but the detailed mechanism and downstream substrates or target signal components are not yet clarified. We applied, therefore, the LAXIC approach with a self-validating method (47) to profile the osmotic stress-dependent phosphoproteome in Arabidopsis by quantifying phosphorylation events before and after mannitol treatment. Among a total of over 2000 phosphopeptides, more than 400 of them are dependent on osmotic stress. Those phosphoproteins are present on enzymes participating in signaling networks that are involved in many processes such as signal transduction, cytoskeleton development, and apoptosis. Overall, LAXIC represents a powerful tool for label-free quantitative phosphoproteomics.  相似文献   
999.
1000.
Poly(2-(diethylamino)ethyl methacrylate) coated magnetic nanoparticles (PDEA-MNPs) were synthesized as a new gene nanocarrier to delivery plasmids (pEGFPN1 and pRL-TK) into human hepatoma (Hep G2) cells. The PDEA-MNPs shows the pH-sensitive property. These nanoparticles are positively charged at acidic pH and negatively charged at neutral or alkaline pH. The PDEAMNPs exhibited a low cytotoxicity in Hep G2 cells. PDEA-MNPs could bind and protect DNA from DNase I degradation. The transfection study demonstrated that the PDEA-MNPs could carry plasmid into Hep G2 cells and exhibited a high gene transfection efficiency. These results indicated that the novel magnetic nanoparticles could enhance gene transfection in vitro and hold the potential to be a promising non-viral nanodevice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号